Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Heart Lung Transplant ; 42(5): 575-584, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36707296

RESUMEN

BACKGROUND: In lung transplantation, ischemia-reperfusion injury associated with mitochondrial damage can lead to graft rejection. Intact, exogenous mitochondria provide a unique treatment option to salvage damaged cells within lung tissue. METHODS: We developed a novel method to freeze and store allogeneic mitochondria isolated from porcine heart tissue. Stored mitochondria were injected into a model of induced ischemia-reperfusion injury using porcine ex-vivo lung perfusion. Treatment benefits to immune modulation, antioxidant defense, and cellular salvage were evaluated. These findings were corroborated in human lungs undergoing ex-vivo lung perfusion. Lung tissue homogenate and primary lung endothelial cells were then used to address underlying mechanisms. RESULTS: Following cold ischemia, mitochondrial transplant reduced lung pulmonary vascular resistance and tissue pro-inflammatory signaling and cytokine secretion. Further, exogenous mitochondria reduced reactive oxygen species by-products and promoted glutathione synthesis, thereby salvaging cell viability. These results were confirmed in a human model of ex-vivo lung perfusion wherein transplanted mitochondria decreased tissue oxidative and inflammatory signaling, improving lung function. We demonstrate that transplanted mitochondria induce autophagy and suggest that bolstered autophagy may act upstream of the anti-inflammatory and antioxidant benefits. Importantly, chemical inhibitors of the MEK autophagy pathway blunted the favorable effects of mitochondrial transplant. CONCLUSIONS: These data provide direct evidence that mitochondrial transplant improves cellular health and lung function when administered during ex-vivo lung perfusion and suggest the mechanism of action may be through promotion of cellular autophagy. Data herein contribute new insights into the therapeutic potential of mitochondrial transplant to abate ischemia-reperfusion injury during lung transplant, and thus reduce graft rejection.


Asunto(s)
Trasplante de Pulmón , Daño por Reperfusión , Humanos , Porcinos , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Células Endoteliales/metabolismo , Pulmón , Reperfusión , Mitocondrias/metabolismo , Trasplante de Pulmón/métodos , Isquemia , Daño por Reperfusión/metabolismo , Perfusión/métodos
2.
Mol Cancer Res ; 19(10): 1699-1711, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34131071

RESUMEN

HER2-positive breast cancers are among the most heterogeneous breast cancer subtypes. The early amplification of HER2 and its known oncogenic isoforms provide a plausible mechanism in which distinct programs of tumor heterogeneity could be traced to the initial oncogenic event. Here a Cancer rainbow mouse simultaneously expressing fluorescently barcoded wildtype (WTHER2), exon-16 null (d16HER2), and N-terminally truncated (p95HER2) HER2 isoforms is used to trace tumorigenesis from initiation to invasion. Tumorigenesis was visualized using whole-gland fluorescent lineage tracing and single-cell molecular pathology. We demonstrate that within weeks of expression, morphologic aberrations were already present and unique to each HER2 isoform. Although WTHER2 cells were abundant throughout the mammary ducts, detectable lesions were exceptionally rare. In contrast, d16HER2 and p95HER2 induced rapid tumor development. d16HER2 incited homogenous and proliferative luminal-like lesions which infrequently progressed to invasive phenotypes whereas p95HER2 lesions were heterogenous and invasive at the smallest detectable stage. Distinct cancer trajectories were observed for d16HER2 and p95HER2 tumors as evidenced by oncogene-dependent changes in epithelial specification and the tumor microenvironment. These data provide direct experimental evidence that intratumor heterogeneity programs begin very early and well in advance of screen or clinically detectable breast cancer. IMPLICATIONS: Although all HER2 breast cancers are treated equally, we show a mechanism by which clinically undetected HER2 isoforms program heterogenous cancer phenotypes through biased epithelial specification and adaptations within the tumor microenvironment.


Asunto(s)
Neoplasias de la Mama/genética , Carcinogénesis/genética , Isoformas de Proteínas/genética , Receptor ErbB-2/genética , Animales , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Ratones , Ratones Noqueados , Microambiente Tumoral/genética
3.
Science ; 371(6534)2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33479120

RESUMEN

Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) are common drug targets and canonically couple to specific Gα protein subtypes and ß-arrestin adaptor proteins. G protein-mediated signaling and ß-arrestin-mediated signaling have been considered separable. We show here that GPCRs promote a direct interaction between Gαi protein subtype family members and ß-arrestins regardless of their canonical Gα protein subtype coupling. Gαi:ß-arrestin complexes bound extracellular signal-regulated kinase (ERK), and their disruption impaired both ERK activation and cell migration, which is consistent with ß-arrestins requiring a functional interaction with Gαi for certain signaling events. These results introduce a GPCR signaling mechanism distinct from canonical G protein activation in which GPCRs cause the formation of Gαi:ß-arrestin signaling complexes.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestinas/metabolismo , Transferencia de Energía por Resonancia de Bioluminiscencia , Movimiento Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células HEK293 , Humanos , Transducción de Señal
4.
Cell ; 181(6): 1364-1379.e14, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32470395

RESUMEN

Small molecule neurotensin receptor 1 (NTSR1) agonists have been pursued for more than 40 years as potential therapeutics for psychiatric disorders, including drug addiction. Clinical development of NTSR1 agonists has, however, been precluded by their severe side effects. NTSR1, a G protein-coupled receptor (GPCR), signals through the canonical activation of G proteins and engages ß-arrestins to mediate distinct cellular signaling events. Here, we characterize the allosteric NTSR1 modulator SBI-553. This small molecule not only acts as a ß-arrestin-biased agonist but also extends profound ß-arrestin bias to the endogenous ligand by selectively antagonizing G protein signaling. SBI-553 shows efficacy in animal models of psychostimulant abuse, including cocaine self-administration, without the side effects characteristic of balanced NTSR1 agonism. These findings indicate that NTSR1 G protein and ß-arrestin activation produce discrete and separable physiological effects, thus providing a strategy to develop safer GPCR-targeting therapeutics with more directed pharmacological action.


Asunto(s)
Conducta Adictiva/metabolismo , Receptores de Neurotensina/metabolismo , beta-Arrestinas/metabolismo , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Animales , Conducta Adictiva/tratamiento farmacológico , Línea Celular , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Bibliotecas de Moléculas Pequeñas/farmacología
5.
Nat Commun ; 10(1): 5490, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31792216

RESUMEN

Field cancerization is a premalignant process marked by clones of oncogenic mutations spreading through the epithelium. The timescales of intestinal field cancerization can be variable and the mechanisms driving the rapid spread of oncogenic clones are unknown. Here we use a Cancer rainbow (Crainbow) modelling system for fluorescently barcoding somatic mutations and directly visualizing the clonal expansion and spread of oncogenes. Crainbow shows that mutations of ß-catenin (Ctnnb1) within the intestinal stem cell results in widespread expansion of oncogenes during perinatal development but not in adults. In contrast, mutations that extrinsically disrupt the stem cell microenvironment can spread in adult intestine without delay. We observe the rapid spread of premalignant clones in Crainbow mice expressing oncogenic Rspondin-3 (RSPO3), which occurs by increasing crypt fission and inhibiting crypt fixation. Crainbow modelling provides insight into how somatic mutations rapidly spread and a plausible mechanism for predetermining the intratumor heterogeneity found in colon cancers.


Asunto(s)
Neoplasias del Colon/genética , Modelos Animales de Enfermedad , Células Madre Neoplásicas/citología , Animales , Carcinogénesis , Proliferación Celular , Neoplasias del Colon/metabolismo , Neoplasias del Colon/fisiopatología , Humanos , Ratones , Mutación , Células Madre Neoplásicas/metabolismo , Oncogenes , Trombospondinas/genética , Trombospondinas/metabolismo
6.
J Biol Chem ; 292(17): 7208-7222, 2017 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-28275053

RESUMEN

The leucine-rich G protein-coupled receptor-5 (LGR5) is expressed in adult tissue stem cells of many epithelia, and its overexpression is negatively correlated with cancer prognosis. LGR5 potentiates WNT/ß-catenin signaling through its unique constitutive internalization property that clears negative regulators of the WNT-receptor complex from the membrane. However, both the mechanism and physiological relevance of LGR5 internalization are unclear. Therefore, a natural product library was screened to discover LGR5 internalization inhibitors and gain mechanistic insight into LGR5 internalization. The plant lignan justicidin B blocked the constitutive internalization of LGR5. Justicidin B is structurally similar to more potent vacuolar-type H+-ATPase inhibitors, which all inhibited LGR5 internalization by blocking clathrin-mediated endocytosis. We then tested the physiological relevance of LGR5 internalization blockade in vivo A LGR5-rainbow (LBOW) mouse line was engineered to express three different LGR5 isoforms along with unique fluorescent protein lineage reporters in the same mouse. In this manner, the effects of each isoform on cell fate can be simultaneously assessed through simple fluorescent imaging for each lineage reporter. LBOW mice express three different forms of LGR5, a wild-type form that constitutively internalizes and two mutant forms whose internalization properties have been compromised by genetic perturbations within the carboxyl-terminal tail. LBOW was activated in the intestinal epithelium, and a year-long lineage-tracing course revealed that genetic blockade of LGR5 internalization diminished cell fitness. Together these data provide proof-of-concept genetic evidence that blocking the clathrin-mediated endocytosis of LGR5 could be used to pharmacologically control cell behavior.


Asunto(s)
Clatrina/química , Endocitosis , Leucina/química , Receptores Acoplados a Proteínas G/química , Adenosina Trifosfatasas/química , Animales , Línea Celular Tumoral , Linaje de la Célula , Proliferación Celular , Dioxolanos/química , Epitelio/metabolismo , Femenino , Homeostasis , Humanos , Lignanos/química , Ratones , Ratones Endogámicos C57BL , Isoformas de Proteínas , Ratas , Células Madre/citología , Procesos Estocásticos , Vía de Señalización Wnt
7.
BMC Biol ; 13: 107, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26678094

RESUMEN

BACKGROUND: Membrane proteins regulate a diversity of physiological processes and are the most successful class of targets in drug discovery. However, the number of targets adequately explored in chemical space and the limited resources available for screening are significant problems shared by drug-discovery centers and small laboratories. Therefore, a low-cost and universally applicable screen for membrane protein trafficking was developed. RESULTS: This high-throughput screen (HTS), termed IRFAP-HTS, utilizes the recently described MarsCy1-fluorogen activating protein and the near-infrared and membrane impermeant fluorogen SCi1. The cell surface expression of MarsCy1 epitope-tagged receptors can be visualized by simple addition of SCi1. User-friendly, rapid, and quantitative detection occurs on a standard infrared western-blotting scanner. The reliability and robustness of IRFAP-HTS was validated by confirming human vasopressin-2 receptor and dopamine receptor-2 trafficking in response to agonist or antagonist. The IRFAP-HTS screen was deployed against the leucine-rich G protein-coupled receptor-5 (Lgr5). Lgr5 is expressed in stem cells, modulates Wnt/ß-catenin signaling, and is therefore a promising drug target. However, small molecule modulators have yet to be reported. The constitutive internalization of Lgr5 appears to be one primary mode through which its function is regulated. Therefore, IRFAP-HTS was utilized to screen 11,258 FDA-approved and drug-like small molecules for those that antagonize Lgr5 internalization. Glucocorticoids were found to potently increase Lgr5 expression at the plasma membrane. CONCLUSION: The IRFAP-HTS platform provides a versatile solution for screening more targets with fewer resources. Using only a standard western-blotting scanner, we were able to screen 5,000 compounds per hour in a robust and quantitative assay. Multi-purposing standardly available laboratory equipment eliminates the need for idiosyncratic and more expensive high-content imaging systems. The modular and user-friendly IRFAP-HTS is a significant departure from current screening platforms. Small laboratories will have unprecedented access to a robust and reliable screening platform and will no longer be limited by the esoteric nature of assay development, data acquisition, and post-screening analysis. The discovery of glucocorticoids as modulators for Lgr5 trafficking confirms that IRFAP-HTS can accelerate drug-discovery and drug-repurposing for even the most obscure targets.


Asunto(s)
Descubrimiento de Drogas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Proteínas de la Membrana/metabolismo , Descubrimiento de Drogas/economía , Células HEK293 , Ensayos Analíticos de Alto Rendimiento/economía , Humanos , Transporte de Proteínas , Reproducibilidad de los Resultados
8.
J Cell Sci ; 128(6): 1230-40, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25653388

RESUMEN

Embryonic development and adult tissue homeostasis require precise information exchange between cells and their microenvironment to coordinate cell behavior. A specialized class of ultra-long actin-rich filopodia, termed cytonemes, provides one mechanism for this spatiotemporal regulation of extracellular cues. We provide here a mechanism whereby the stem-cell marker Lgr5, and its family member Lgr4, promote the formation of cytonemes. Lgr4- and Lgr5-induced cytonemes exceed lengths of 80 µm, are generated through stabilization of nascent filopodia from an underlying lamellipodial-like network and functionally provide a pipeline for the transit of signaling effectors. As proof-of-principle, we demonstrate that Lgr5-induced cytonemes act as conduits for cell signaling by demonstrating that the actin motor and filopodial cargo carrier protein myosin X (Myo10) and the G-protein-coupled receptor (GPCR) signaling effector ß-arrestin-2 (Arrb2) transit into cytonemes. This work delineates a biological function for Lgr4 and Lgr5 and provides the rationale to fully investigate Lgr4 and Lgr5 function and cytonemes in mammalian stem cell and cancer stem cell behavior.


Asunto(s)
Actinas/metabolismo , Membrana Celular/metabolismo , Extensiones de la Superficie Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células Madre/metabolismo , Adulto , Arrestinas/metabolismo , Transporte Biológico , Western Blotting , Células HEK293 , Humanos , Inmunoprecipitación , Seudópodos/fisiología , Transducción de Señal , Células Madre/citología , Arrestina beta 2 , beta-Arrestinas
9.
J Biol Chem ; 289(48): 33442-55, 2014 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-25261469

RESUMEN

The G protein-coupled ghrelin receptor GHSR1a is a potential pharmacological target for treating obesity and addiction because of the critical role ghrelin plays in energy homeostasis and dopamine-dependent reward. GHSR1a enhances growth hormone release, appetite, and dopamine signaling through G(q/11), G(i/o), and G(12/13) as well as ß-arrestin-based scaffolds. However, the contribution of individual G protein and ß-arrestin pathways to the diverse physiological responses mediated by ghrelin remains unknown. To characterize whether a signaling bias occurs for GHSR1a, we investigated ghrelin signaling in a number of cell-based assays, including Ca(2+) mobilization, serum response factor response element, stress fiber formation, ERK1/2 phosphorylation, and ß-arrestin translocation, utilizing intracellular second loop and C-tail mutants of GHSR1a. We observed that GHSR1a and ß-arrestin rapidly form metastable plasma membrane complexes following exposure to an agonist, but replacement of the GHSR1a C-tail by the tail of the vasopressin 2 receptor greatly stabilizes them, producing complexes observable on the plasma membrane and also in endocytic vesicles. Mutations of the contiguous conserved amino acids Pro-148 and Leu-149 in the GHSR1a intracellular second loop generate receptors with a strong bias to G protein and ß-arrestin, respectively, supporting a role for conformation-dependent signaling bias in the wild-type receptor. Our results demonstrate more balance in GHSR1a-mediated ERK signaling from G proteins and ß-arrestin but uncover an important role for ß-arrestin in RhoA activation and stress fiber formation. These findings suggest an avenue for modulating drug abuse-associated changes in synaptic plasticity via GHSR1a and indicate the development of GHSR1a-biased ligands as a promising strategy for selectively targeting downstream signaling events.


Asunto(s)
Arrestina/metabolismo , Proteínas de Unión al GTP/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Receptores de Ghrelina/metabolismo , Arrestina/genética , Proteínas de Unión al GTP/genética , Células HEK293 , Humanos , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Plasticidad Neuronal/fisiología , Estabilidad Proteica , Estructura Secundaria de Proteína , Transporte de Proteínas/fisiología , Receptores de Ghrelina/genética , Receptores de Vasopresinas/genética , Receptores de Vasopresinas/metabolismo
10.
J Biol Chem ; 288(15): 10286-97, 2013 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-23439653

RESUMEN

LGR5 is a Wnt pathway associated G protein-coupled receptor (GPCR) that serves as a molecular determinant of stem cells in numerous tissues including the intestine, stomach, hair follicle, eye, and mammary gland. Despite its importance as a marker for this critical niche, little is known about LGR5 signaling nor the biochemical mechanisms and receptor determinants that regulate LGR5 membrane expression and intracellular trafficking. Most importantly, in cells LGR5 is predominantly intracellular, yet the mechanisms underlying this behavior have not been determined. In this work we elucidate a precise trafficking program for LGR5 and identify the motif at its C terminus that is responsible for the observed constitutive internalization. We show that this process is dependent upon dynamin GTPase activity and find that wild-type full-length LGR5 rapidly internalizes into EEA1- and Rab5-positive endosomes. However, LGR5 fails to rapidly recycle to the plasmid membrane through Rab4-positive vesicles, as is common for other GPCRs. Rather, internalized LGR5 transits through Rab7- and Rab9-positive vesicles, co-localizes in vesicles with Vps26, a retromer complex component that regulates retrograde trafficking to the trans-Golgi network (TGN) and reaches a steady-state distribution in the TGN within 2 h. Using mutagenesis, particularly of putative phosphorylation sites, we show that the amino acid pair, serine 861 and 864, is the principal C-tail determinant that mediates LGR5 constitutive internalization. The constitutive internalization of LGR5 to the TGN suggests the existence of novel biochemical roles for its Wnt pathway related, but ill defined signaling program.


Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , Vía de Señalización Wnt/fisiología , Red trans-Golgi/metabolismo , Endosomas/genética , Endosomas/metabolismo , Células HEK293 , Humanos , Transporte de Proteínas/fisiología , Receptores Acoplados a Proteínas G/genética , Factores de Tiempo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab5/genética , Proteínas de Unión al GTP rab5/metabolismo , Proteínas de Unión a GTP rab7 , Red trans-Golgi/genética
11.
PLoS One ; 8(12): e84476, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24386388

RESUMEN

Lgr5 is a membrane protein related to G protein-coupled receptors (GPCR)s whose expression identifies stem cells in multiple tissues and is strongly correlated with cancer. Despite the recent identification of endogenous ligands for Lgr5, its mode of signaling remains enigmatic. The ability to couple to G proteins and ßarrestins are classical molecular behaviors of GPCRs that have yet to be observed for Lgr5. Therefore, the goal of this study was to determine if Lgr5 can engage a classical GPCR behavior and elucidate the molecular determinants of this process. Structural analysis of Lgr5 revealed several motifs consistent with its ability to recruit ßarr2. Among them, a "SSS" serine cluster located at amino acid position 873-875 within the C-terminal tail (C-tail), is in a region consistent with other GPCRs that bind ßarr2 with high-affinity. To test its functionality, a ligand-independent ßarr2 translocation assay was implemented. We show that Lgr5 recruits ßarr2 and that the "SSS" amino acids (873-875) are absolutely critical to this process. We also demonstrate that for full efficacy, this cluster requires other Lgr5 C-tail serines that were previously shown to be important for constitutive and ßarr2 independent internalization of Lgr5. These data are proof of principle that a classical GPCR behavior can be manifested by Lgr5. The existence of alternative ligands or missing effectors of Lgr5 that scaffold this classical GPCR behavior and the downstream signaling pathways engaged should be considered. Characterizing Lgr5 signaling will be invaluable for assessing its role in tissue maintenance, repair, and disease.


Asunto(s)
Arrestinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Secuencias de Aminoácidos , Arrestinas/genética , Células HEK293 , Humanos , Estructura Terciaria de Proteína , Receptores Acoplados a Proteínas G/genética , Arrestina beta 2 , beta-Arrestinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...